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1. INTRODUCTION 

The study of fixed point theory has been at the 

centre of vigorous activity and it has a wide range 

of applications in applied mathematics and 

sciences. Various fixed point theorems has been 

proved in various metric spaces in which one of 

the important metric space is G-metric space in 

which triangular inequality was replaced by 

quadrilateral inequality. 

Mustafa and Sims [7] introduced the concept of 

G-metric space which was generalization of the 

metric space. The idea of Generalization of metric 

space were proposed by Gahler [1, 2] (called 2-

metric spaces) and Dhage [3,4]  (called D-metric 

spaces). Hsiao [5] showed that, for every 

contractive definition, with   :=     , every 

orbit is linearly dependent, thus  to provide fixed 

point theorem in such spaces are invalid. So, it 

was shown that certain theorems involving 

Dhage’s D-metric spaces are flawed, and most of 

the result claimed by Dhage and other are invalid. 

These errors were point out by Mustafa and Sims 

in [6], among others. They also introduced a valid 

generalized metric space structure, which they 

call G-metric spaces in which non-negative real 

number is assigned to every triplet of elements.  

Some other papers dealing with G-metric spaces 

are those in [7-11]. To prove the existence of 

solutions for a class of integral equation, fixed 

point theorems in G-metric space helps a lot.  As 

before many research paper provides various 

theorems and broad section of its applications, the 

main aim of this paper to prove a fixed point 

theorem for contraction mapping. Some important 

papers which deal with Property P are those in 

[12-14]. 

 In this paper we prove a new fixed point theorem 

using contraction based on rational map.  

 

    Let   be a self-map of a complete metric space 

(X, d) with a nonempty fixed point set F( ).Then 

   is said to satisfy property P if F( ) = F(  ) 

for each n    . The maps which satisfy property 

P have an interesting property that they have no 

nontrivial periodic points. 

 

2. PRELIMINARIES 

Definition 1.1 ([11]). Let X  be a non-empty set 

and G : X
3      

 
 be a function satisfying the 

following axioms: 

( 1) ( , , ) 0G G x y z   if ,x y z   

( 2) 0 ( , , )G G x x y   ,x y X  with x y  

                                  x,y,z  X ,with  
z y  

( 4) ( , , ) ( , , ) ( , , ) ...G G x y z G x z y G y z x                  

(Symmetry in all three variables).  

( 5) ( , , ) ( , , ) ( , , )G G x y z G x a a G a y z    

          , , , ,x y z a X  (rectangular inequality ) 

Then the function G  is called a generalized 

metric, or specifically a G-metric on X  and the 

pair ( , )X G  is called a G-metric space.  

 

Definition 1.2 ([11]) Let ( , )X G  be a G-metric 

space and let{ }nx  be a sequence of points in ,X  

a point x  in X  is said to be the limit of the 

sequence {  }
 
 and if  G(x,      )=0  one says 

that sequence{ }nx  is G-convergent to .x  Thus 

             in a G-metric space ( , ),X G  

then for each   > 0 there exists a positive integer 

N  such that ( , , )n mG x x x   for all m, n ≥ 

N. 

Now, we state some results from the papers ([2]-

[6]) which are helpful for proving our main 

results 

Proposition 1.3 ([11]). Let ( , )X G  be a G-metric 

space. Then the following are equivalent: 
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{ }nx is G-convergent to ,x  

( , , )n nG x x x  as ,n   

 ( , , )nG x x x   as ,n   

( , , ) 0m nG x x x   as , .m n   

Definition 1.4 ([10]). Let ( , )X G  be G-metric 

space. A sequence is called G-Cauchy if, for each 

0.   there exists a positive integer N  such 

that 1( , ) ,n mG x x x   for all 

, , , . ., ( , , ) 0n m ln m l N i e G x x x   as 

, , .n m l   

Definition 1.5 ([10]) A G-Metric space ( , )X G  is 

said to be G-complete if every G-Cauchy 

sequence in ( , )X G  is G-convergent .X   

Definition 1.6 ([11]). If (X, G) and (X
’
, G

’
) be two 

G-metric space and let f : (X, G)     (X
’
, G

’
)  be a 

function, then f is said to be G-continuous at a 

point x0 X if given ε> 0, there exists  > 0 such 

that for x, y  X and G(x0, x, y) <  implies 

G
’
(f(x0), f(x), f(y)) <ε. A function f  is G-

continuous at X if and only if it is G-continuous at 

all x0   X or function f is said to be G-continuous 

at a point x0   X if and only if it is G-sequentially 

continuous at x0, that is, whenever {xn} is G-

convergent to x0, { f(xn) } is G-convergent to f(x0). 

3. Main Results 

Theorem 2.1 Let a complete G-metric Space  

(X, G) and        satisfying,    
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       (2.1) 

for          X and k                      
Then   has a unique fixed point          and   is 

G-Continuous at p. 

Proof.  Many fundamental ideas of sequencing are 

introduced within till date papers, in the concrete 

setting  let      be an arbitrary element and we 

can define the sequence {  } by        . It is 

assumed that         for each        , 
then there exists an element     such that    
    , then    is a fixed point of  .  

From (2.1), with                 
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Let G(            )        for some       

                     . Then we have 

                                    

                                  

                                                    

       Which is contradiction, since      are 

distinct. 

             Suppose that there is an n      for 

which                       . Using the 

property (G5),                         
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and hence we have 

                
 

 
              

                ] 

which implies that 

                
 

   
              

                                                        ,  

Because of    which is less than 1.            

we get congruent result if we decided on 

 Mn =
                  

 
 

which gives, 

  (            )                  (2.2) 

Now for every single one of the n   , we have 

 (            )                  

                                                 .  

        (2.3)             

for  every           , using (G5) and (2.3), 

we have       

                             
               

                                             

  
  

   
           . 

                     , since k < 1 

Therefore {  } is G-convergent, since X is a G-

complete. The limit point p (say) must belong to 

X. 

Hence            

From (2.1) with           , 

               = G(         ) 
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Since,          , we can take n approaches 

to infinity in above equation and on that account 

we have, 

            

       

(

 
 
 
 

           

                  
          

          

                   
            

                     

 
 

                     

 )

 
 
 
 

  

                  

(

 

             
          

 
 

          

 )

   

                           

which implies that              , since k < 1 

and accordingly  p =  p  

Uniqueness 

It is proved that p is a fixed point now let  q be 

any other fixed point. Using (2.1), we have 

            

       

(
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By the definition of fixed point 
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) 

It is obvious that, 

               ≤   G(p,q,q)   

since k < 1. 

Now, to show that   is G-continuous for all the 

values of n, 

  Let {      be an arbitrary sequence having 

one of the limit point as p. using (2.1), we have 

G             

    

(
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since p is the fixed point, 

G            

     

(
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Using the relation by (G5) 

G                                     

                    

Case 1. If, for some n, ω is equal to 
          

                     
              

 then we have, 

                   

      
          

                     
        

                                     

Case 2. If, for some     

  
         

                        
            then we 

have 

                      

      
         

                        
        

                                               

Case 3.  If, for some     

  
                         

 
  

then we have  

                 

              
 

   
          .   

Case 4. If, for some    

ω =
                      

 
, then, we have  

                ,      

              
 

   
          .    

Therefore, for all n,                    and 

  is G-continuous at p. 

Property P 

Let   be a self-map of a complete metric 

space (X, d) with a nonempty fixed point set 

F( ).Then    is said to satisfy property P if F( ) 

= F(  ) for each n    . 

In this section we shall show that maps satisfying 

(2.1) possess property P. 

Theorem 2.2 Under the condition of theorem 2.1, 

  has property P. 

Proof. From Theorem 2.1,   has a fixed point. 

Therefore          for each    . Fix     
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and assume that        . We wish to show 

that       . 

Suppose that     . Using (2.1), 

                               

                    

       

(

 
 
 
 
 
 
 

                  

                               
 

                 
                  

                                 
 

                   
                                       

 
 

                                         

 )

 
 
 
 
 
 
 

 

=   G(               

                        

                ,        

a contradiction by the reason of value of k. 

     Therefore        and   has property P. 
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